Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture

نویسندگان

  • Trevor Campbell
  • Miao Liu
  • Brian Kulis
  • Jonathan P. How
  • Lawrence Carin
چکیده

This paper presents a novel algorithm, based upon the dependent Dirichlet process mixture model (DDPMM), for clustering batch-sequential data containing an unknown number of evolving clusters. The algorithm is derived via a lowvariance asymptotic analysis of the Gibbs sampling algorithm for the DDPMM, and provides a hard clustering with convergence guarantees similar to those of the k-means algorithm. Empirical results from a synthetic test with moving Gaussian clusters and a test with real ADS-B aircraft trajectory data demonstrate that the algorithm requires orders of magnitude less computational time than contemporary probabilistic and hard clustering algorithms, while providing higher accuracy on the examined datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models

Sampling and variational inference techniques are two standard methods for inference in probabilistic models, but for many problems, neither approach scales effectively to large-scale data. An alternative is to relax the probabilistic model into a non-probabilistic formulation which has a scalable associated algorithm. This can often be fulfilled by performing small-variance asymptotics, i.e., ...

متن کامل

Small Variance Asymptotics for Non-Parametric Online Robot Learning

Small variance asymptotics is emerging as a useful technique for inference in large scale Bayesian non-parametric mixture models. This paper analyses the online learning of robot manipulation tasks with Bayesian non-parametric mixture models under small variance asymptotics. The analysis yields a scalable online sequence clustering (SOSC) algorithm that is non-parametric in the number of cluste...

متن کامل

Small-Variance Asymptotics for Dirichlet Process Mixtures of SVMs

Infinite SVM (iSVM) is a Dirichlet process (DP) mixture of large-margin classifiers. Though flexible in learning nonlinear classifiers and discovering latent clustering structures, iSVM has a difficult inference task and existing methods could hinder its applicability to large-scale problems. This paper presents a smallvariance asymptotic analysis to derive a simple and efficient algorithm, whi...

متن کامل

The Dynamic Chinese Restaurant Process via Birth and Death Processes

We develop the Dynamic Chinese Restaurant Process (DCRP) which incorporates time-evolutionary feature in dependent Dirichlet Process mixture models. This model can capture the dynamic change of mixture components, allowing clusters to emerge, vanish and vary over time. All these macroscopic changes are controlled by tracing the birth and death of every single element. We investigate the propert...

متن کامل

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes

The classical mixture of Gaussians model is related to K-means via small-variance asymptotics: as the covariances of the Gaussians tend to zero, the negative log-likelihood of the mixture of Gaussians model approaches the K-means objective, and the EM algorithm approaches the K-means algorithm. Kulis & Jordan (2012) used this observation to obtain a novel K-means-like algorithm from a Gibbs sam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013